Evaluation of the dispersion energy expression
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(structure_type), | intent(in) | :: | mol |
Molecular structure data |
||
real(kind=wp), | intent(in) | :: | trans(:,:) |
Lattice points |
||
real(kind=wp), | intent(in) | :: | cutoff |
Real space cutoff |
||
real(kind=wp), | intent(in) | :: | s9 |
Scaling for dispersion coefficients |
||
real(kind=wp), | intent(in) | :: | rs9 |
Scaling for van-der-Waals radii in damping function |
||
real(kind=wp), | intent(in) | :: | alp |
Exponent of zero damping function |
||
real(kind=wp), | intent(in) | :: | rvdw(:,:) |
Van-der-Waals radii for all element pairs |
||
real(kind=wp), | intent(in) | :: | c6(:,:) |
C6 coefficients for all atom pairs. |
||
real(kind=wp), | intent(in) | :: | dc6dcn(:,:) |
Derivative of the C6 w.r.t. the coordination number |
||
real(kind=wp), | intent(inout) | :: | energy(:) |
Dispersion energy |
||
real(kind=wp), | intent(inout) | :: | dEdcn(:) |
Derivative of the energy w.r.t. the coordination number |
||
real(kind=wp), | intent(inout) | :: | gradient(:,:) |
Dispersion gradient |
||
real(kind=wp), | intent(inout) | :: | sigma(:,:) |
Dispersion virial |
subroutine get_atm_dispersion_derivs(mol, trans, cutoff, s9, rs9, alp, rvdw, c6, dc6dcn, & & energy, dEdcn, gradient, sigma) !> Molecular structure data class(structure_type), intent(in) :: mol !> Lattice points real(wp), intent(in) :: trans(:, :) !> Real space cutoff real(wp), intent(in) :: cutoff !> Scaling for dispersion coefficients real(wp), intent(in) :: s9 !> Scaling for van-der-Waals radii in damping function real(wp), intent(in) :: rs9 !> Exponent of zero damping function real(wp), intent(in) :: alp !> Van-der-Waals radii for all element pairs real(wp), intent(in) :: rvdw(:, :) !> C6 coefficients for all atom pairs. real(wp), intent(in) :: c6(:, :) !> Derivative of the C6 w.r.t. the coordination number real(wp), intent(in) :: dc6dcn(:, :) !> Dispersion energy real(wp), intent(inout) :: energy(:) !> Derivative of the energy w.r.t. the coordination number real(wp), intent(inout) :: dEdcn(:) !> Dispersion gradient real(wp), intent(inout) :: gradient(:, :) !> Dispersion virial real(wp), intent(inout) :: sigma(:, :) integer :: iat, jat, kat, izp, jzp, kzp, jtr, ktr real(wp) :: vij(3), vjk(3), vik(3), r2ij, r2jk, r2ik, c6ij, c6jk, c6ik, triple real(wp) :: r0ij, r0jk, r0ik, r0, r1, r2, r3, r5, rr, fdmp, dfdmp, ang, dang real(wp) :: cutoff2, c9, dE, dGij(3), dGjk(3), dGik(3), dS(3, 3) ! Thread-private arrays for reduction ! Set to 0 explicitly as the shared variants are potentially non-zero (inout) real(wp), allocatable :: energy_local(:) real(wp), allocatable :: dEdcn_local(:) real(wp), allocatable :: gradient_local(:, :) real(wp), allocatable :: sigma_local(:, :) cutoff2 = cutoff*cutoff !$omp parallel default(none) & !$omp shared(mol, trans, c6, s9, rs9, alp, rvdw, cutoff2, dc6dcn) & !$omp private(iat, jat, kat, izp, jzp, kzp, jtr, ktr, vij, vjk, vik, & !$omp& r2ij, r2jk, r2ik, c6ij, c6jk, c6ik, triple, r0ij, r0jk, r0ik, r0, & !$omp& r1, r2, r3, r5, rr, fdmp, dfdmp, ang, dang, c9, dE, dGij, dGjk, & !$omp& dGik, dS) & !$omp shared(energy, gradient, sigma, dEdcn) & !$omp private(energy_local, gradient_local, sigma_local, dEdcn_local) allocate(energy_local(size(energy, 1)), source=0.0_wp) allocate(dEdcn_local(size(dEdcn, 1)), source=0.0_wp) allocate(gradient_local(size(gradient, 1), size(gradient, 2)), source=0.0_wp) allocate(sigma_local(size(sigma, 1), size(sigma, 2)), source=0.0_wp) !$omp do schedule(runtime) do iat = 1, mol%nat izp = mol%id(iat) do jat = 1, iat jzp = mol%id(jat) c6ij = c6(jat, iat) r0ij = rs9 * rvdw(jzp, izp) do jtr = 1, size(trans, 2) vij(:) = mol%xyz(:, jat) + trans(:, jtr) - mol%xyz(:, iat) r2ij = vij(1)*vij(1) + vij(2)*vij(2) + vij(3)*vij(3) if (r2ij > cutoff2 .or. r2ij < epsilon(1.0_wp)) cycle do kat = 1, jat kzp = mol%id(kat) c6ik = c6(kat, iat) c6jk = c6(kat, jat) c9 = -s9 * sqrt(abs(c6ij*c6ik*c6jk)) r0ik = rs9 * rvdw(kzp, izp) r0jk = rs9 * rvdw(kzp, jzp) r0 = r0ij * r0ik * r0jk triple = triple_scale(iat, jat, kat) do ktr = 1, size(trans, 2) vik(:) = mol%xyz(:, kat) + trans(:, ktr) - mol%xyz(:, iat) r2ik = vik(1)*vik(1) + vik(2)*vik(2) + vik(3)*vik(3) if (r2ik > cutoff2 .or. r2ik < epsilon(1.0_wp)) cycle vjk(:) = vik(:) - vij(:) r2jk = vjk(1)*vjk(1) + vjk(2)*vjk(2) + vjk(3)*vjk(3) if (r2jk > cutoff2 .or. r2jk < epsilon(1.0_wp)) cycle r2 = r2ij*r2ik*r2jk r1 = sqrt(r2) r3 = r2 * r1 r5 = r3 * r2 fdmp = 1.0_wp / (1.0_wp + 6.0_wp * (r0 / r1)**(alp / 3.0_wp)) ang = 0.375_wp*(r2ij + r2jk - r2ik)*(r2ij - r2jk + r2ik)& & *(-r2ij + r2jk + r2ik) / r5 + 1.0_wp / r3 rr = ang*fdmp dfdmp = -2.0_wp * alp * (r0 / r1)**(alp / 3.0_wp) * fdmp**2 ! d/drij dang = -0.375_wp * (r2ij**3 + r2ij**2 * (r2jk + r2ik)& & + r2ij * (3.0_wp * r2jk**2 + 2.0_wp * r2jk*r2ik& & + 3.0_wp * r2ik**2)& & - 5.0_wp * (r2jk - r2ik)**2 * (r2jk + r2ik)) / r5 dGij(:) = c9 * (-dang*fdmp + ang*dfdmp) / r2ij * vij ! d/drik dang = -0.375_wp * (r2ik**3 + r2ik**2 * (r2jk + r2ij)& & + r2ik * (3.0_wp * r2jk**2 + 2.0_wp * r2jk * r2ij& & + 3.0_wp * r2ij**2)& & - 5.0_wp * (r2jk - r2ij)**2 * (r2jk + r2ij)) / r5 dGik(:) = c9 * (-dang * fdmp + ang * dfdmp) / r2ik * vik ! d/drjk dang = -0.375_wp * (r2jk**3 + r2jk**2*(r2ik + r2ij)& & + r2jk * (3.0_wp * r2ik**2 + 2.0_wp * r2ik * r2ij& & + 3.0_wp * r2ij**2)& & - 5.0_wp * (r2ik - r2ij)**2 * (r2ik + r2ij)) / r5 dGjk(:) = c9 * (-dang * fdmp + ang * dfdmp) / r2jk * vjk dE = rr * c9 * triple energy_local(iat) = energy_local(iat) - dE/3.0_wp energy_local(jat) = energy_local(jat) - dE/3.0_wp energy_local(kat) = energy_local(kat) - dE/3.0_wp gradient_local(:, iat) = gradient_local(:, iat) - dGij - dGik gradient_local(:, jat) = gradient_local(:, jat) + dGij - dGjk gradient_local(:, kat) = gradient_local(:, kat) + dGik + dGjk dS(:, :) = spread(dGij, 1, 3) * spread(vij, 2, 3)& & + spread(dGik, 1, 3) * spread(vik, 2, 3)& & + spread(dGjk, 1, 3) * spread(vjk, 2, 3) sigma_local(:, :) = sigma_local + dS * triple dEdcn_local(iat) = dEdcn_local(iat) - dE * 0.5_wp & & * (dc6dcn(iat, jat) / c6ij + dc6dcn(iat, kat) / c6ik) dEdcn_local(jat) = dEdcn_local(jat) - dE * 0.5_wp & & * (dc6dcn(jat, iat) / c6ij + dc6dcn(jat, kat) / c6jk) dEdcn_local(kat) = dEdcn_local(kat) - dE * 0.5_wp & & * (dc6dcn(kat, iat) / c6ik + dc6dcn(kat, jat) / c6jk) end do end do end do end do end do !$omp end do !$omp critical (get_atm_dispersion_derivs_) energy(:) = energy(:) + energy_local(:) dEdcn(:) = dEdcn(:) + dEdcn_local(:) gradient(:, :) = gradient(:, :) + gradient_local(:, :) sigma(:, :) = sigma(:, :) + sigma_local(:, :) !$omp end critical (get_atm_dispersion_derivs_) deallocate(energy_local) deallocate(dEdcn_local) deallocate(gradient_local) deallocate(sigma_local) !$omp end parallel end subroutine get_atm_dispersion_derivs